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1. Introduction and Results

Let f be analytic in the unit disk and let Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2 be its
Schwarzian derivative. If f is locally univalent and satisfies

|Sf(z)| ≤ 2

(1− |z|2)2
(1.1)

then f is univalent. Furthermore, if the stronger inequality

|Sf(z)| ≤ 2t

(1− |z|2)2
(1.2)

holds for some 0 ≤ t < 1, then f has a quasiconformal extension to the plane. On
the other hand, if f is univalent in the first place then

|Sf(z)| ≤ 6

(1− |z|2)2
. (1.3)

These are well known and important theorems of Nehari, Ahlfors and Weill, and
Krauss. We refer to Lehto’s book [8] for a discussion of these results and for the
properties of the Schwarzian that we shall need. The constants 2 in (1.1) and 6 in
(1.3) are sharp. An example for the latter is the Koebe function k(z) = z(1− z)−2

which has Schwarzian Sk(z) = −6/(1 − z2)2. We also remark that the class of
univalent functions satisfying (1.1) is quite large; for instance, it contains the class
of convex mappings.

Since S(M◦f) = Sf for any Möbius transformation M , the inequalities above are
independent of any such normalization M◦f of f , and this is an interesting feature
of these results. However, if we require the normalization f(0) = 0, f ′(0) = 1, and
f ′′(0) = 0 then we can obtain, rather simply, sharp and explicit upper and lower
bounds on |f | and |f ′| for functions which satisfy (1.1) or (1.2) . We introduce the
following functions. Let

n(z) =
1√
2

(1 + z)
√

2 − (1− z)
√

2

(1 + z)
√

2 + (1− z)
√

2
, N(z) =

1

2
log

1 + z

1− z
, (1.4)
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and, for 0 ≤ t < 1, let

A(z; t) = At(z) =
1√

1− t
(1 + z)

√
1−t − (1− z)

√
1−t

(1 + z)
√

1−t + (1− z)
√

1−t
. (1.5)

These functions are analytic for |z| < 1 and are normalized as above. Their
Schwarzian derivatives are

Sn(z) =
−2

(1− z2)2
, SN(z) =

2

(1− z2)2
, (1.6)

and

SAt(z) =
2t

(1− z2)2
. (1.7)

For the function A(z;−t), which we also need, one has SA−t(z) = −SAt(z).
The mapping properties of these functions are easy enough to see. The function

N(z), of course, maps the disk onto the horizontal strip |Im(ζ)| < π/2. The other
functions have to do with the pair of circles

|ζ ± i

α
cot

π

α
| = 1

α

1

sin π
α

, 0 < α < 2.

The function n(z) maps the disk onto the region interior to the union of the two
circles with α =

√
2, while the image of A(z; t) is the region bounded by the

intersection of the two circles with α =
√

1− t. The function A(z;−t) is like n(z)
with α =

√
1 + t.

These functions are extremal in the class of normalized functions which satisfy
(1.1) or (1.2).

Theorem 1: Let f be analytic in the unit disk with f(0) = 0, f ′(0) = 1, and
f ′′(0) = 0.

(i) If f satisfies (1.1) then

n(|z|) ≤ |f(z)| ≤ N(|z|) (1.8)

n′(|z|) ≤ |f ′(z)| ≤ N ′(|z|) . (1.9)

(ii) If f satisfies (1.2) then

A(|z|;−t) ≤ |f(z)| ≤ A(|z|; t) (1.10)

A′(|z|;−t) ≤ |f ′(z)| ≤ A′(|z|; t) , (1.11)

where A′ means differentiation with respect to z. In any of these inequalities, if
equality holds at one point other than the origin then f is conjugate by a rotation
to one of n(z), N(z), A(z; t), or A(z;−t) as the case may be.

It is interesting to note that in the hypothesis of Theorem 1 we really only
have to assume that the function is locally univalent and meromorphic. For the
classes of functions we study, the absence of poles is actually a consequence of the
normalization. This will become apparent from the proof of Corollary 2, below.
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The functions A(z;±t) give a 1-parameter family from n(z) = A(z;−1) to N(z) =
limt→1A(z; t) with A(z; 0) = z. Notice also that normalized functions satisfying
the Ahlfors–Weill condition are bounded. This turns out to be quite useful in other
contexts, [2].

The simple character of the bounds in Theorem 1 makes it possible to deduce
fairly directly several other interesting facts. For example, a normalized function
satisfying the Ahlfors-Weill condition (1.2) has a Hölder continuous extension to
the closed disk, with a better exponent than that which one gets just from the
quasiconformal extension.

Corollary 1: If f is analytic in the unit disk, is normalized as in Theorem 1, and
satisfies (1.2) then f has a Hölder continuous extension to |z| ≤ 1 with

|f(z1)− f(z2)| ≤ 4π√
1− t

|z1 − z2|
√

1−t,

for all z1, z2 in |z| ≤ 1. The exponent
√

1− t is sharp.
In their paper [7], Gehring and Pommerenke obtain information on extensions

to the closed disk of functions which satisfy Nehari’s condition (1.1). Their precise
estimates do not follow directly from the first part of Theorem 1.

Finally, a number of authors have found the normalization f ′′(0) = 0 to be
helpful in studying the Schwarzian, see especially [7]. How restictive is it, if one
wants to stick with analytic rather than meromorphic functions? This points up a
curious fact about (locally) univalent functions. If f(z) = z+a2z

2 + . . . is analytic
in the disk then g = f/(1 + a2f) again has g(0) = 0, g′(0) = 1 and also g′′(0) = 0,
and has the same Schwarzian as f . It will be analytic in the disk if f does not
assume the value −a2

−1 there. This is actually the case for functions which satisfy
the Nehari condition (1.1). It is not true for the full class of univalent functions,
though it is closer to being true than one might think. We have the following.

Corollary 2: Let f = z + a2z
2 + . . . be analytic and locally univalent in the unit

disk.

(i) If f satisfies (1.1) then f does not assume the value −a2
−1 in |z| < 1.

(ii) If f satisfies

|Sf(z)| ≤ 2α

(1− |z|2)2
, (1.12)

where 1 < α, then f does not assume the value −a2
−1 in the disk |z|<tanh

(
π

2
√
α−1

)
.

To say more about the second part of this theorem, we let |z| < r0(α) be the
largest disk on which any f satisfying (1.12) does not assume the value −a2

−1.
Then 1 ≥ r0(α) ≥ tanh(π/(2

√
α− 1)), but we do not know whether the lower

bound is sharp for any α, even for univalent functions. We do know that for
α = 3, which includes the full class of univalent functions, one has .804 . . . =
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tanh(π/(2
√

2)) ≤ r0(3) ≤
√

3/2 = .866 . . . . Examples are given by the mappings

f(z) =
z − z2 cosφ

(1− eiφz)2
= z + (2eiφ − cosφ)z2 + . . . .

For cosφ 6= 0, 1 this function maps the disk onto the complement of a non-radial
halfline with finite endpoint at i/(4 sinφ) and inclination (3π/2)−2φ, see [3, ?, ?].
For the Schwarzian we compute

Sf(z) =
6 sin2 φ

(eiφ − z)2(e−iφ − z)2
,

and then that (1 − |z|2)2|Sf(z)| ≤ 6 with equality holding along the hyperbolic
geodesic joining eiφ and e−iφ in the disk. The most convincing way of seeing
this, if perhaps not the most direct, is to observe that it is possible to write
f(z) = T1(k(T2(z))) where T1 is a similarity, k is the Koebe function, and T2 is a
Möbius transformation of the disk onto itself. The transformation formula for the
Schwarzian and the invariance of the Poincaré metric then give the result. It is
easy to solve f(z) = −(2eiφ−cosφ)−1 and one finds a real solution varying between√

3/2 and 1 when cosφ > 0 (and between −
√

3/2 and −1 when cosφ < 0 ). The
minimum

√
3/2 occurs when cosφ = 1/

√
3.

The proofs of the Theorem and its Corollaries will be given in Section 2. In
Section 3 we show how these results can be applied to get a classical coefficient
bound. In Section 4 we remark briefly on the situation for another univalence
criterion.

2. Proofs

The main result is Theorem 1, giving bounds on f and f ′. The arguments
use only basic comparison theorems for differential equations. The normalizations
f ′(0) = 1, f ′′(0) = 0 give particularly convenient initial conditions. In this con-
nection we call attention to the interesting paper of Essén and Keogh [4]. These
authors employ similar techniques, but with different aims. We use some of their
lemmas, but it does not seem that the results of the present paper can be deduced
directly from their theorems.

The starting point is the fact that for a function f as in Theorem 1 one has the
representation

f(z) =

∫ z

0

u−2(ζ) dζ, (2.1)

where u satisfies the the initiial value problem

u′′ +
1

2
Sf u = 0, u(0) = 1, u′(0) = 0. (2.2)

The following Lemmas will apply directly to the proof of the second part of Theo-
rem 1, but the same reasoning can be used with obvious changes for the proof of the
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first part. For convenience, we will write q(z) = (1/2)Sf(z) and p(r) = t(1− r2)−2

for 0 ≤ r < 1. The hypothesis of the second part of Theorem 1 is then that
|q(z)| ≤ p(|z|).

Lemma 2.1. Let w(x) defined on [0, 1) be real valued and satisfy

w′′ + pw ≥ 0, w(0) = 1, w′(0) = 0.

Then w ≥ h where

h′′ + p h = 0, h(0) = 1, h′(0) = 0. (2.3)

Proof. Let y = w − h. Then y′′ + p y ≥ 0, y(0) = 0, y′(0) = 0. The solutuion g
to g′′ + p g = 0 with g(0) = 0, g′(0) = 1 is bounded and positive on (0, 1) with
g(1) = 0, see [6, ?]. Then for ε > 0, we have (y + ε g)′′ + p (y + ε g) ≥ 0, with
(y + ε g)(0) = 0 and (y + ε g)′(0) > 0. A standard Sturm comparison theorem
guarantees that y + ε g ≥ 0 on [0, 1]. Since ε > 0 is arbitrary and g is bounded,
the Lemma follows. �

Lemma 2.2. The solution u of (2.2) satisfies |u|′′ + p |u| ≥ 0 on [0, 1).

Proof. Let η = |u|2 = u ū. Since u = (f ′)−
1
2 6= 0, we know that |u| is differentiable.

Hence 2|u| |u|′ = η′ = u′ ū+ u ū′, and then

η′′ = u′′ū+uū′′+2|u′|2 = 2|u| |u|′′+2(|u|′)2 = −(q+q̄)|u|2+2|u′|2 ≥ −2p|u|2+2|u′|2.

But |u′|2 ≥ (|u|′)2 and |u| > 0, so we conclude that |u|′′ ≥ −p|u| as desired. �

The argument in this proof can be applied along any segment [0, eiθ). It follows
from Lemmas 1 and 2 that

|u(z)| ≥ h(|z|) for all z with |z| < 1. (2.4)

The solution h to (2.3) is classical and is given by

h(z) =
1

2

√
1− z2

{(
1 + z

1− z

)γ
+

(
1 + z

1− z

)−γ}
, (2.5)

where γ = 1
2

√
1− t, see [6, ?].

We now put

At(z) =

∫ z

0

h−2(ζ) dζ.

Surprisingly, the integration is quite simple and yields the expression in (1.5). The
upper bounds for |f | and |f ′| in (1.10) and (1.11) follow at once from (2.4).

In order to establish the corresponding lower bounds we consider the solution v
to

v′′ − p v = 0, v(0) = 1, v′(0) = 0. (2.6)
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It follows from Lemma 8 in [4] that |u(z)| ≤ v(|z|) for all z with |z| < 1. Again, v
can be found explicitly to be,

v(z) =
1

2

√
1− z2

{(
1 + z

1− z

)δ
+

(
1 + z

1− z

)−δ}
,

where δ = 1
2

√
1 + t. Then ∫ z

0

v−2(ζ) dζ

gives the expression for A(z;−t) and the lower bound for |f ′| in (1.11). We employ
a standard argument to derive the lower bound for |f | in (1.10). Suppose that
on the circle |z| = r < 1 the minimum of |f | is assumed at the point z1. The
inverse of f is then defined all along the segment I = [0, ζ1], ζ1 = f(z1). Thus with
J = f−1(I) we have

|ζ1| =
∫
I

|dζ| =
∫
J

|f ′(z)| |dz| ≥
∫
J

A
′

−t(|z|) |dz| ≥
∫ |z1|

0

A
′

−t(|z|) |dz| = A−t(|z1|),

(2.7)
where the final integral is along the segment form 0 to z1.

Next we consider the cases of equality:

(i) |f(z0)| = At(|z0|),
(ii) |f ′(z0)| = A

′
t(|z0|),

(iii) |f(z0)| = A−t(|z0|),
(iv) |f ′(z0)| = A

′
−t(|z0|),

for some z0 6= 0. By taking e−iθf(eiθz), eiθ = z0/|z0|, we may assume that z0 =
x0 > 0. Case (i) will be reduced to case (ii), and case (iii) will be reduced to case
(iv).

Suppose that |f ′(x0)| = A
′
t(x0). Then the function y = |f ′|− 1

2 − (A
′
t)
− 1

2 satisfies

y′′ + p y ≥ 0, y ≥ 0, y′(0) = 0

and y(x0) = 0. It follows from Lemma 4 in [4] that y is identically zero, that is,
that |f ′(x)| = A

′
t(x) for all x in [0, x0], and therefore on all of [0, 1) since both sides

are analytic. We will show that (2q(x) =)Sf(x) = SAt(x) (= 2p(x)). Along [0, 1)
let ψ = |f ′|−1 = |u|2 = (A

′
t)
−1 = v2. Then, as in Lemma 2.2,

ψ′′ = −(q + q̄)|u|2 + 2|u′|2 = −2pv2 + 2(v′)2.

But |u′|2 ≥ (|u|′)2 = (v′)2 and −(q+ q̄) ≥ −2p. Thus we must have equality in both
cases, which implies that q = p on [0, 1) and hence in the entire disk. Therefore
f = At because of the normalizations.
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This settles case (ii). To get case (i) from this, suppose that |f(x0)| = At(x0).
Then the string of inequalities,

|f(x0)| ≤
∫ x0

0

|f ′(x)| dx ≤
∫ x0

0

A
′

t(x) dx = At(x0),

implies that |f ′(x)| = A
′
t(x) for all x in [0, x0] and we are back to case (ii).

We now reduce case (iii) to case (iv). If |f(x0)| = A−t(x0) then in the inequalities
in (2.7) we have equality everywhere. This implies that J is the interval [0, x0] and
that |f ′(x)| = A

′
−t(x) along the interval. The fact that f(z) = A−t(z) for all |z| < 1

is then a consequence of Lemma 8 in [4], where the authors characterize the case
of equality at a point x0 6= 0 of the functions |u| and v = (A

′
−t)
−2. Equality at

a single nonzero point implies equality everywhere. This finishes the proof of the
second part of Theorem 1. As we mentioned above, the proof for the first half runs
along the same lines, using the explicit solutions to the differential equation for
the normalized functions satisfying Sf = ±2/(1− z2)2.

Suppose now that f is normalized as above with (1 − |z|2)2|Sf(z)| ≤ 2t. The
proof that f satisfies a Hölder condition, as asserted in Corollary 1, is a straight-
forward consequence of the upper bound (1.11). From (1.11) we have

|f ′(z)| ≤ 4
(1 + |z|)2ν−1(1− |z|)2ν−1

((1 + |z|)2ν + (1− |z|)2ν)2
,

where 2ν =
√

1− t. It follows that

|f ′(z)| ≤ 41−2ν

(1− |z|)1−2ν
.

From here we follow the argument as in [7], which we give for the convenience of
the reader. For z1, z2 in the disk, let Γ be the hyperbolic segment joining z1 and
z2. Then Γ has euclidean length l ≤ π

2
|z1 − z2| and min(s, l − s) ≤ π

2
(1 − |ζ|) for

each ζ on Γ, where s is the euclidean arclength of the part of Γ between z1 and ζ.
Thus

|f(z1)−f(z2)| ≤
∫
Γ

|f ′(ζ)| |dζ| ≤ 41−2ν

∫
Γ

|dζ|
(1− |ζ|)1−2ν

≤ 2·41−2ν

∫ l/2

0

(
π

2
)1−2ν ds

s1−2ν
.

Integration, together with l ≤ π
2
|z1 − z2|, yields

|f(z1)− f(z2)| ≤ 81−2ν

4ν
π|z1 − z2|2ν ≤

4π√
1− t

|z1 − z2|
√

1−t.

This shows uniform continuity in the disk, and hence the extension of f to the
closure satisfies the same Hölder condition. The example At(z) shows that the
exponent is sharp.
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This completes the proof of Corollary 1. We have one additional minor comment
on this. The bounds in (1.11) give

A(1− |z|)µ−1 ≤ |f ′(z)| ≤ B(1− |z|)ν−1,

where µ =
√

1 + t and ν =
√

1− t, as above. The function g = f−1 is defined in
the image Ω of the disk under f , which is a quasidisk. Hence, by a result in [13], g
will be Hölder continuous with exponent η if and only if |g′(ζ)| ≤ C dist(ζ, ∂Ω)η−1,
where dist denotes the euclidean distance. Using both the upper and lower bounds
for |f ′| above, one can show easily that |g′(ζ)| ≤ C dist(ζ, ∂Ω)(1−µ)/ν . The exponent
(1 − µ)/ν is of the form η − 1 for η > 0 if and only if t <

√
3/2. Thus for

0 ≤ t <
√

3/2 the function g is Hölder continuous with the unattractive exponent
η = (1 +

√
1− t −

√
1 + t)/

√
1− t. It is known, however, that a conformal map

from a quasidisk onto the disk is Hölder continuous with some exponent > (1/2),
see [9],[10],[1]. This value of η improves these results, in this case, for small t, and
η → 1 as t→ 0, which is what one expects.

Next, we consider the problem of normalizing f(z) = z + a2z
2 + a3z

3 + · · · to
g = f/(1 + a2f) = z + (a3 − a2

2)z3 + · · · while still staying within the class of
analytic functions. The function g is meromorphic in |z| < 1 and the issue is
whether it has a pole, at a point z0 where f(z0) = −a2

−1. Suppose first that f
satisfies Nehari’s condition (1.1). Then so does g, where the Schwarzian at a pole is
defined via inversion. If, say, |z| < r ≤ 1 is the largest disk on which g is analytic,
then the same arguments used in the proof of Theorem 1 show that

|g(z)| ≤ 1

2
log

1 + |z|
1− |z|

(2.8)

in |z| < r. Then g is bounded on |z| < r and hence cannot have a pole in |z| < 1.
Therefore f does not assume the value −a2

−1.
Next suppose that f , hence g, satisfies (1− |z|2)2|Sf(z)| ≤ 2α for α > 1. Again

suppose that the largest disk on which g is analytic is |z| < r. The function

Fα(z) =
1√
α− 1

tan

{√
α− 1

2
log

1 + z

1− z

}
has Fα(0) = 0, F

′
α(0) = 1, F

′′
α (0) = 0, with SFα(z) = 2α/(1 − z2)2, and Fα is

analytic on the disk |z| < r1 = tanh(π/(2
√
α− 1)). Similar differential equations

arguments show that |g(z)| ≤ Fα(|z|) on the disk |z| < min {r, r1}. Hence we must
have r ≥ r1, i.e. f cannot assume the value −a2

−1 in the disk |z| < r1, which is
what we wanted to show.

Finally, we note that the normalization and the lower bound in (1.8) can be
used to give a quick proof of Nehari’s original univalence criterion. Suppose that
f is analytic, satisfies (1.1), and that f(z1) = f(z2) for two points in the disk.
The condition (1.1) is invariant under compositions f ◦M with a self-mapping of
the disk, and we may therefore suppose that z1 = 0. Now normalize f so that



SHARP DISTORTION THEOREMS ASSOCIATED WITH THE SCHWARZIAN DERIVATIVE 9

f(0) = 0, f ′(0) = 1, f ′′(0) = 0 by a Möbius transformation of the range. Then
the normalized f is again analytic, and the lower bound in (1.8) implies that
z2 = z1 = 0.

3. Covering Properties and Bounds on a2

If f(z) = z + a2z
2 + · · · is analytic and (locally) univalent in the disk, then

bounds on Sf of the type we have been considering lead to covering properties of
f and to bounds on a2. This was one of the main points of the Essén and Keogh
paper. It was also investigated in a paper by Farkas [5] who in turn recoverd some
results of Pommerenke [12]. Here, we want to show how the further normalization
f ′′(0) = 0 can lead back, in a new way, to the Big Bang of univalent functions:
|a2| ≤ 2. This is only for people who do not like Faber’s square root trick. One
can do more along these lines, but this is a typical application of the methods of
this paper.

First suppose that a normalized function f(z) = z + b3z
3 + · · · is analytic

and univalent in the disk. Then (2.1) and (2.2) hold as before. Since |Sf(z)| ≤
6(1− |z|2)−2 it follows as in earlier arguments that |f(z)| ≥ ϕ(|z|), and |f ′(z)| ≥
ϕ′(|z|), where

ϕ(z) =

∫ z

0

v−2(ζ) dζ,

with

v′′ − 3(1− z2)−2v = 0, v(0) = 1, v′(0) = 0.

The solution of the differential equation is v(z) = (1− z2)−
1
2 (1 + z2) which yields

ϕ(z) = z/(1 + z2). Hence any such normalized univalent function satisfies

|f(z)| ≥ |z|
1 + |z|2

(3.1)

|f ′(z)| ≥ 1− |z|2

(1 + |z|2)2
. (3.2)

Equality at z0 6= 0 in either inequality implies that f(z) = z/(1 + e−2iθz2), eiθ =
z0/|z0|. In particular, we conclude that the range of f covers a disk centered at
the origin of radius at least 1/2.

Now let g(z) = z+ a2z
2 + · · · be analytic and univalent in B = {|z| < 1}. Then

f = g/(1 + a2g) is normalized as above, with a possible pole at a (unique) point
where g(z) = −a2

−1. We claim that even in this case the range of f covers at least
|w| < 1

2
. If g never assumes −a2

−1 then this follows from the previous analysis.
Suppose g(z0) = −a2

−1, z0 6= 0. Let B′ = B\{z0}, and let σ be the shorter radial
slit from z0 to ∂B. Then f is regular in the simply connected domain B\σ and
the representation (2.1) holds there. It follows as before that |f ′(z)| ≥ ϕ′(|z|) for
z εB\σ, and by continuity this is also true in B′.
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By considering r−1f(rz) and letting r ↑ 1 we may assume that f is one-to-one
on the unit circle. Let Γ = f(∂B) and let ζ1 εΓ be such that |ζ1| = inf |ζ| on Γ.
Then I, the segment from 0 to ζ1, lies in f(B). With J = f−1(I) we have

|ζ1| =
∫
I

|dζ| =
∫
J

|f ′(z)| |dz| ≥
∫
J

ϕ′(|z|) |dz| ≥
∫ 1

0

ϕ′(|z|) |dz| = 1

2
,

where the last integral is along a radius from 0 to the circle. (Note that z0 does
not lie on J .)

This establishes the claim that the range of f does cover the disk |w| < 1
2
. Now,

since g = f/(1 − a2f) is analytic in |z| < 1 we must have |a2|−1 ≥ 1
2
, or |a2| ≤ 2.

Finally, if |a2| = 2 then |ζ1| = 1
2

and it follows easily from the cases of equality
in (3.2) that f is a Möbius transformation of the Koebe function and that g is a
rotation of the Koebe function.

4. Other Univalece Criteria

Nehari also proved that

|Sf(z)| ≤ π2/2 , (4.1)

is a sufficient condition for a function to be univalent in the disk (see also [11]).
According to [7] the stronger condition

|Sf(z)| ≤ t
π2

2
, (4.2)

for some 0 ≤ t < 1, then implies that f has a quasiconformal extension to the
plane. There are analogues of Theorem 1 and Corollaries 1 and 2 for this condition.
The differential equations for the extremal functions are even easier to solve than
before, and the comparison theorems show that a function satisfying (4.1) or (4.2),
and normalized by f(0) = 0, f ′(0) = 1, f ′′(0) = 0, is subject to the sharp bounds

2

π
√
t

tanh

(
π
√
t

2
|z|
)
≤ |f(z)| ≤ 2

π
√
t

tan

(
π
√
t

2
|z|
)
, (4.3)

cosh−2

(
π
√
t

2
|z|
)
≤ |f ′(z)| ≤ cos−2

(
π
√
t

2
|z|
)
. (4.4)

As before, the cases of equality at a single z 6= 0 implies that f is conjugate by a
rotation to the corresponding extremal function.

As for Corollary 1, it is interesting to note that a normalized function satisfying
(4.2) for some t < 1 has an extension to the closed disk which is Lipschitz. The
argument is as before, using (4.4). Finally, it follows as in the proof of Corollary
2 that a function f(z) = z + a2z

2 + · · · satisfying (4.1) does not assume the
value −a2

−1 in the unit disk, i.e, it is always possible to normalize further to get
f ′′(0) = 0.
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